Ресурсное обеспечение
городских строительных программ

Классификация цемента

Цементы

Цемент - вяжущее вещество, обладающее гидравлическими свойствами, состоящее из клинкера и, при необходимости, гипса или его производных и добавок. Цементы классифицируют по назначению (общестроительные, специальные строительные, нестроительные), по виду клинкера и вещественному составу, по прочности при сжатии, скорости твердения, срокам схватывания, нормированию специальных свойств. Общестроительные цементы - гидравлические вяжущие вещества, основным требованием к которым является обеспечение прочности и долговечности растворов и бетонов. Специальные строительные цементы - цементы, к которые, наряду с уровнем прочности, предъявляют специальные требования, , например, по сульфатостойкости, тепловыделению, деформации при твердении и др. Цементы нестроительные предназначены для общетехнического применения, непосредственно не связанного со строительством: производство формовочных материалов, бурение скважин, изоляция обжиговых агрегатов и др. По виду клинкера цементы подразделяют на цементы на основе портландцементного клинкера и на основе глинозёмистого (высокоглинозёмистого) клинкера, и иногда на основе сульфоалюминатного клинкера.

По вещественномy составу цементы на основе портландцементного клинкера подразделяются на:
бездобавочные, не содержащие активных минеральных добавок (ПЦЦО) или содержащие до 5% масс, добавок (ПЦД5);
цементы с минеральными добавками, не более 20% масс. (ПЦД20);
шлакопортландцемент с содержанием доменного шлака более 20% масс. (ШПЦ).

Во все типы цементов разрешается вводить до 5% масс, добавок, ускоряющих твердейте или повышающих прочность. Вышеприведённая классификация по вещественному составу предусматривается действующими российскими стандартами ГОСТ 10178, ПЭСТ 23464. При дальнейшем развитии нормативной документации классификация цементов будет приближена к европейским нормам (пять основных типов цементов по EN 197) - классификация по прочности (ГОСТ 23464) относит цементы к высокопрочным (марка 550, 600 и выше), повышенной прочности (марка 500), рядовые (марок 300, 400), низкомарочные (менее 300). По ГОСТ 30515 предусматривается по прочности при сжатии подразделять цементы на классы 22,5; 32,5; 42,5; 52,5.

По скорости твердения и срокам схватывания (ГОСТ 30515) цементы подразделяют на:
нормальнотвердевощие - с нормированием прочности в возрасте 2 (7) и 28сут.;
быстротвердеющие - с нормированием прочности в возрасте 2 сут., повышенной по сравнению с нормальнотвердеющими, а также в 28 сут.;
особобыстротвердеющие с нормированием прочности в 1 сут. и менее (ГОСТ 23464);
медленносхватывающиеся (начало схватывания более 2 часов);
нормальносхватывающиеся (начало схватывания от 45 мин. До 2 часов);
быстросхватывающиеся (начало схватывания ранее 45 мин.)

Быстротвердеющие цементы

Быстротвердеющие цементы - группа цементов различной природы и состава, характеризующаяся способностью обеспечить в нормальных условиях твердения формирование искусственного камня заданной прочности за короткий период (за короткие сроки твердения).

Природа таких цементов различна: это могут быть быстротвердеющие цементы на основе портландцементного клинкера - быстротвердеющие портландцемента, глинозёмистые (алюминатные) цементы, магнезиальные цементы, смеси нескольких цементов и смеси цементов с добавками и др. Существенно может отличаться и уровень нормируемой ранней прочности цементного камня: в некоторых случаях, например, для укрепления грунтов, достаточно получить камень с прочностью 0,1 МПа, в других случаях, например, для устройства полов, начальный уровень прочности цемента должен соответствовать значениям 5-10 МПа. Сроки достижения требуемой прочности быстротвердеющих цементов, в зависимости от предполагаемой области их применения, составляют от нескольких часов до 2-3 суток. В ряде случаев, когда прочность формируется за очень короткое время (несколько часов), быстротвердеющие цементы становятся также быстросхватывающимися (начало схватывания ранее 45 мин.), поскольку процесс cхватывания цемента всегда является составляющей стадией процесса формирования прочности.

Оценка способности таких цементов к формированию ранней прочности осуществляется, обычно, на основании результатов стандартных испытаний (например, для быстротвердеющих портландцементов), однако, в ряде случаев, вещественный состав образцов и параметры их испытания не стандартизованы, а устанавливаются в зависимости от конкретных условий применения цемента.

Глинозёмистый и высокоглинозёмистый цементы

Глинозёмистый и высокоглинозёмистый цементы (по зарубежной номенклатуре - алюминатные цементы) получают размолом соответственно глинозёмистого и высокоглинозёмистого клинкера, принципиально отличающихся по минералогическому составу от портландцементного клинкера. Если основу портландцементного клинкера составляют высокоосновные силикаты кальция, а содержание глинозёма (Аl2О3) в клинкере обычно не превышает 5-7%, то клинкер глинозёмистого (ГЦ) и высокоглинозёмистого (ВГЦ) цементов в качестве основных минералов содержит низкоосновные алюминаты кальция (СаО/Аl2О3 мольн. < 1,0), а содержание глинозёма в таких цементах находится в пределах от 35% для ГЦ до 60-80% для ВГЦ (ГОСТ 969).

Для глинозёмистого цемента основным минералом, определяющим комплекс его строительно-технических свойств, является моноалюминат кальция (СаО*Аl2О3), обеспечивающий как быстрое нарастание прочности цементного камня, так и высокую марочную прочность: от 40 МПа для ГЦ-40 до 60 МПа для ГЦ-60, причём марочная прочность устанавливается по результатам испытаний образцов в 3-х суточном возрасте.

Для ГЦ нормируется также суточная прочность в пределах от 22,5 МПа для ГЦ-40 до 32,5 МПа для ГЦ-60.

Для ВГЦ основными минералами, наряду с СаО*Аl2О3, являются алюминаты кальция с ещё более низкой основностью: СаО*2Аl2О3 и CaO*6Аl2О3, в результате чего скорость набора прочности и марочная прочность таких цементов снижается по сравнению с ГЦ. Однако, определяющим свойством для высокоглинозёмистых цементов является не прочность камня, а его огнеупорность, которая составляет от 1580°С для ВГЦ1, содержащего не менее 60% Al203, до 1750°С для ВГЦШ, содержащего не менее 80% Аl2О3.

Отличительная особенность гидратации и твердения глинозёмистых цементов, по сравнению с портландцементом, определяется более низкой щёлочностью системы, вследствие чего при гидратации глинозёмистых цементов не образуется гидроксид кальция Са(ОН)2, а фазовый состав затвердевшего цементного камня представлен гидроалюминатами кальция и гидроксидом алюминия (Al(OH)3).

Глинозёмистый цемент - нормально схватывающееся (начало схватывания не ранее 45 мин.), быстротвердеющее, высокопрочное гидравлическое вяжущее вещество. По скорости набора прочности и величине прочности в начальные сроки твердения ГЦ, как правило, превосходит быстротвердеющие портландцементы. Для глинозёмистого цемента характерен быстрый набор прочности после окончания схватывания, завершающийся обычно к 3-м суткам, падение ранней прочности, если твердение происходит при повышенных температурах (более 25°С), снижение прочности в длительные сроки (до 10 лет и более). Глинозёмистый цемент менее чувствителен, чем портландцемент, к влиянию низких температур (положительных) на скорость набора прочности. Цементный камень из ГЦ характеризуется высокой водонепроницаемостью, морозостойкостью, а также высокой химической стойкостью, в частности, к сульфатной и углекислотной коррозии, однако не стоек к действию щелочей и свободных кислот. Применяют глинозёмистый цемент, чаще всего, при проведении аварийных и ремонтных работ, а также для производства конструкций и материалов в тех случаях, когда требуется быстрое обеспечение прочности.

Для высокоглинозёмистых цементов характерны сокращенные сроки начала схватывания (30 мин.), однако их твердение происходит медленнее, чем твердение ГЦ, а образующийся камень, как правило, характеризуется сравнительно невысокой прочностью (25-35 МПа в 3-х суточном возрасте, причём впоследствии прочность не возрастает).

Основной областью применения глинозёмистых и высоко глинозёмистых цементов является производство жаростойких и огнеупорных бетонов.

При производстве сухих строительных смесей глинозёмистый цемент используется в качестве вяжущего вещества в тех составах, для которых темп набора прочности является определяющим свойством: это ремонтные составы, самонивелирующиеся смеси и стяжки для устройства полов и, в некоторых случаях, материалы для облицовочных плиток (затирки). Распространение в качестве быстросхватывающихся и быстротвердеющих получили смеси глинозёмистого (высокоглинозёмистого) и портландцемента, однако применение таких смесей имеет ряд особенностей: ускорение схватывания и твердения смеси цементов неизбежно сопровождается потерей конечной прочности, поэтому в каждом конкретном случае соотношение глинозёмистого и портландцемента должно быть подобрано экспериментально, исходя из необходимости получения заданного срока схватывания растворной смеси и прочности раствора.

Глинозёмистые и высокоглинозёмистые цементы применяются при производстве жаростойких сухих строительных смесей.

Кислотоупорный цемент

Кислотоупорный цемент - специальный цемент, представляющий собой смесь совместно или раздельно молотых кварцевого песка и кремнефтористого натрия (Na2SiF6), которая при затворении водным раствором силиката натрия или калия (жидкого стекла) образует кислотостойкий камень. Такой цемент применяется для связи штучных химически стойких материалов при защите корпусов химической аппаратуры, оборудования или строительных конструкций кислотоупорными замазками и растворами, а также для приготовления кислотоупорных бетонов или изделий из них. Содержание кремнефтористого натрия в кислотоупорном кварцевом кремнефтористом цементе составляет 4% в цементах, предназначенных для изготовления замазок и 8% - для растворов и бетонов (ГОСТ 5050). В качестве кислотоупорного заполнителя в растворах и бетонах используется кварцевый песок, могут применяться и другие кислотостойкие измельчённые породы: базальт, гранит, андезит, кварцит и др. Кремнефтористый натрий является химическим отвердителем жидкого стекла, образующим при взаимодействии с последним гель кремнезёма, обеспечивающий формирование плотной и кислотоустойчивой структуры камня. Содержание технического кремнефтористого натрия в составе кислотостойкого раствора составляет 15% от массы жидкого стекла. Кислотостойкость кислотоупорного цемента определяется кипячением стандартных образцов в 40% растворе серной кислоты с последующим их испытанием на прочность.

Ограничения применения кислотоупорного цемента распространяются на воздействие щелочей, HF, H2SiF6, кипящей воды и водяного пара, а также связаны с токсичностью кремнефтористого натрия.

Кислотоупорные цементы, растворы и бетоны могут быть приготовлены в виде сухих смесей, при этом в качестве вяжущего вещества применяются порошки гидратированных силикатов натрия или калия. В качестве жидкости затворения таких сухих смесей вместо жидкого стекла используется вода.

Кладочные цементы

Кладочные цементы - группа низкоклинкерных многокомпонентных цементов, содержащих не менее 20% портландцементного клинкера, активные минеральные и инертные добавки (наполнители), предназначенных, преимущественно, для приготовления кладочных и штукатурных растворов. Для производства цементов используют доменные гранулированные шлаки, кварцевый песок, известняки, мраморы и др. Требования к таким цементам, в частности, нормируются ГОСТ 25328 ("Цемент для строительных растворов").

В современной номенклатуре эти цементы рассматриваются как композиционные. В их состав, в соответствии с предложениями европейского стандарта, предусматривается возможность совместного введения доменного шлака, природной или искусственной пуццолановой добавки и золуноса тепловых станций при минимальном содержании клинкера - 20% масс.

Для кладочных цементов, из-за низкого содержания портландцементного клинкера, характерны длительные сроки схватывания, медленный темп нарастания прочности, низкое значение марочной прочности (~20 МПа).

Требуемая пластичность и водоудерживающая способность цементов обеспечиваются введением в их состав тонкомолотых шлаков, пуццолановых добавок, золуноса, а также специальных пластифицирующих и воздухововлекающих добавок. При приготовлении растворных смесей в большинстве случаев используют минеральные пластификаторы: как правило, гидратную известь, а в отдельных случаях - глину. В некоторых странах нормируются смешанные цементы, содержащие в своём составе известь.

Применительно к сухим строительным смесям, кладочные и композиционные (многокомпонентные) цементы могут быть использованы, при соответствующей корректировке состава смеси, для приготовления сухих растворных кладочных и штукатурных смесей вместо портландцемента или портландцемента с минеральными добавками.

Композиционные цементы

Композиционный цемент - многокомпонентное гидравлическое вяжущее, состоящее из портландцементного клинкера и 2-х и более минеральных техногенных или природных материалов (минеральных добавок). По зарубежным стандартам (например, EN) содержание клинкера в таких цементах не должно быть менее 20%, по проектам современных российских стандартов - 40% качестве минеральных добавок в таких цементах в разных сочетаниях используют доменный гранулированный, пуццолановые добавки, золу-унос тепловых станций, микрокремнезём , а в некоторых случаях и молотый известняк. Композиционные цементы получают совместным размолом клинкера, гипса и минеральных добавок или смешением раздельно размолотых компонентов Производство композиционных цементов преследует цели снижения энергозатрат на приготовление вяжущих веществ и утилизацию отходов. Затраты на производство таких цементов и их стоимость ниже стоимости рядового портландцемента. По стандарту EN-197 в композиционном цементе в качестве минеральных добавок применяются доменный шлак, природная или искусственная пуццолана и кислая зола-унос тепловых электростанций.

Свойства композиционных цементов зависят от их конкретного состава: содержания клинкера, вида и количества минеральных добавок. Они аналогичны свойствам смешанных цементов с высоким содержанием добавок (шлакопортландцемента, пуццоланового портландцемента) и характеризуются невысокой прочностью (марка не выше «300»), замедленными сроками схватывания. Долговечность цементного камня на таком цементе соответствует долговечности камня на рядовом портландцементе.

Разновидностью композиционного цемента, нормируемого ГОСТ 25328, является цемент для строительных растворов (кладочный цемент), а также многокомпонентный цемент.

Композиционные цементы в качестве вяжущего вещества могут быть использованы вместо рядовых цементов с минеральными добавками в производстве некоторых видов сухих строительных смесей (например, в составах кладочных растворов).

Напрягающие цементы

Напрягающие цементы - разновидность расширяющихся цементов, обеспечивающих, наряду с повышенными деформациями расширения цементного камня, соответствующие механические напряжения арматуры при изготовлении изделий из железобетона (самонапряжённые конструкции). От расширяющегося цемента, обеспечивающего безусадочность цементного камня, напрягающий цемент на основе портландцементного клинкера (наиболее распространённый) отличается большим содержанием расширяющегося компонента (до 30%), более короткими сроками начала схватывания (30 мин.) и высоким значением свободного линейного расширения в пределах 1 -2%. Значительное расширение не позволяет использовать напрягающие цементы в неармированных бетонных изделиях и конструкциях. При определённом армировании последних за счёт сцепления цементного камня с арматурой и возникающих вследствие деформаций расширения растягивающих усилий, достигается величина самонапряжения в пределах 0,7-4 МПа. Такая величина самонапряжения армирующих элементов конструкции обеспечивает высокий уровень её прочности, трещиностойкости, водонепроницаемости, коррозионной стойкости.

Основные области применения напрягающих цементов: изготовление сборных элементов (панелей, плит перекрытий) и омоноличивание конструкций, изготовление покрытий полов и дорог, напорных и безнапорных труб, резервуаров, гидроизоляционных покрытий и др. При правильном подборе составов напрягающие цементы с низкой величиной самонапряжения могут быть использованы для производства сухих строительных смесей гидроизоляционного назначения, ремонтных смесей, составов для устройства полов.

Расширяющиеся цементы

Расширяющиеся цементы - цементы, обеспечивающие компенсацию естественной усадки цементного камня в атмосферных (воздушно-сухих) условиях.

Компоненты состава расширяющихся цементов компенсируют усадочные деформации цементного камня и обеспечивают либо безусадочность цементного камня (деформации усадки, близкие к нулю) - безусадочные цементы, либо небольшое контролируемое расширение цементного камня с целью получения определённой величины самонапряжения - напрягающие цементы. Производятся расширяющиеся цементы различной природы, например, бесклинкерный гипсоглинозёмистый цемент (ГГРЦ), однако это могут быть и смешанные композиции, в которые вводят расширяющийся компонент. Наиболее распространёнными расширяющимися цементами являются цементы на основе портландцементного клинкера - продукты совместного размола клинкера, гипса и расширяющегося компонента (расширяющейся добавки). Содержание расширяющегося компонента в таких цементах находится в пределах 5-20%. Компонентами состава расширяющихся цементов, обеспечивающими необходимые значения расширения, чаще всего, являются алюминатные и сульфоалюминатные соединения, образующие эттрингит в процессе формирования прочности цементного камня. Расширяющийся компонент (добавка) может вводиться непосредственно в состав портландцементных растворных (бетонных) смесей, в том числе сухих. Основным условием применения расширяющегося компонента в составе расширяющихся портландцементов является согласование скорости образования активной расширяющейся фазы - эттрингита скорости формирования прочности цементного камня. При быстром раннем) образовании эттрингита его расширение будет происходить в пластичной массе твердеющего портландцемента и не приведёт к расширению всей системы, при медленном и запоздалом - могут возникать опасные напряжения в уже сформировавшейся слабодеформирущейся прочной структуре. По имеющимся представлениям, расширение системы происходит по достижении степени гидратации примерно 50% и при армировании эттрингита в форме игольчатых кристаллических сростков.

Отличие строительно-технических свойств расширяющихся цементов Рядовых портландцементов состоит в компенсированной усадке (линейные деформации (свободное расширение) цементного камня обычно составляют 0,07%). Для напрягающих цементов значения величины свободного расширения существенно выше. Кроме компенсированной усадки, цементный камень на основе расширяющегося цемента характеризуется пониженной проницаемостью, высокой морозостойкостью и коррозийной стойкостью.

В составе сухих строительных смесей расширяющиеся цементы целесообразно применять в составе композиций гидроизоляционного назначения, в ремонтных составах, смесях с повышенной трещиностойкостью (полы) и др.

Сульфатостойкие цементы

Сульфатостойкие цементы - цементы, образующие камень, устойчивый к действию воды, содержащей сульфатные анионы. К сульфатостойким цементам относят цементы на основе портландцементного клинкера (сульфатостойкий портландцемент, сульфатостойкий портландцемент с минеральными добавками, сульфатостойкий шлакопортландцемент, пуццолановый портландцемент). Основная причина сульфатной коррозии цементного камня - образование в уже затвердевшем и прочном камне за счёт взаимодействия гидроалюминатов кальция, входящих в состав цементного камня, и сульфат-ионов коррозионной среды эттрингита (гидросульфоалюмината кальция). Объём твёрдой фазы при этой реакции увеличивается в 2,5 раза, что вызывает внутренние напряжения в камне, появление трещин и может привести к разрушению. Сульфатостойкость цементов достигается, в основном, заснёт ограничения (нормирования) в портландцементном клинкере содержания алюминатной фазы (С3А): 5% -для сульфатостойких портландцемента и цемента с минеральными добавками и 8% - для сульфатостойких шлакопортландце мента и пуццоланового портландцемента (ГОСТ 22266), а также общего содержания в клинкере AI203 (5%). Сульфатостойкий портландцемент производится без добавок, в состав остальных видов сульфатостойких цементов вводится гранулированный доменный шлак или пуццолановая добавка.

По уровню строительно-технических свойств, кроме стойкости в сульфатных водах, Сульфатостойкие цементы не отличаются от рядовых цементов, следует отметить лишь замедленное нарастание прочности в раннем возрасте, связанное с нормированием минералогического состава клинкера (ограничение содержания С3А) и высоким содержанием активной добавки для пуццоланового портландцемента.

Использование сульфатостойких цементов в технологии сухих строительных смесей целесообразно только в случаях, предусматривающих вероятность службы изделий в условиях сульфатной коррозии: в морской воде, в конструкциях фундаментов, подвальных помещений, подваренных действию сульфатсодержащих грунтовых вод.

Высокой сульфатостойкостью обладают также глинозёмистые (алюмитные) цементы.

Цемент многокомпонентный тонкомолотый (ТМЦ)

Цемент многокомпонентный тонкомолотый (ТМЦ) - гидравлическое вяжущее вещество, получаемое совместным измельчением портландцементного клинкера (или портландцемента) и минеральных добавок.

В качестве минеральных добавок используются зола-унос, доменный гранулированный шлак, активные минеральные добавки, а также инертные добавки-наполнители (молотые горные породы: известняк, доломит, мрамор, кварц и др.). Суммарное массовое содержание добавок составляет для цемента ТМЦ-Д20 - 20%, для ТМЦ-Д50 - 50% и ТМЦ-Д80 - 80% (ТУ 5738-001-00284339-93). Тонкомолотый многокомпонентный цемент выпускается марок 300,400 500, при тонкости помола удельной поверхности 400м2/кг для цементов, содержащих 20-50% минеральных добавок, и 430 м2/кг для цементов, содержащих до 80% добавок. Цемент ТМЦ может использоваться вместо портландцемента или шлакопортландцемента для некоторых видов сухих строительных смесей.